360 research outputs found

    Magnetic field processing to enhance critical current densities of MgB2 superconductors

    Get PDF
    Magnetic field of up to 12 T was applied during the sintering process of pure MgB2 and carbon nanotube (CNT) doped MgB2 wires. We have demonstrated that magnetic field processing results in grain refinement, homogeneity and significant enhancement in Jc(H) and Hirr. The Jc of pure MgB2 wire increased by up to a factor of 3 to 4 and CNT doped MgB2 by up to an order of magnitude in high field region respectively, compared to that of the non-field processed samples. Hirr for CNT doped sample reached 7.7 T at 20 K. Magnetic field processing reduces the resistivity in CNT doped MgB2, straightens the entangled CNT and improves the adherence between CNTs and MgB2 matrix. No crystalline alignment of MgB2 was observed. This method can be easily scalable for a continuous production and represents a new milestone in the development of MgB2 superconductors and related systems

    Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices

    Full text link
    Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.Comment: 23 pages, 7 figure

    Fundamentals of FGF19 & FGF21 Action In Vitro and In Vivo

    Get PDF
    Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21 actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences are still observed differentiating the two. In vitro we found that both FGF's activate FGFRs in the context of βKlotho (KLB) expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency. Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor, the FGF21 delta N17 mutant, also blocked FGF19's effects, suggestive of a shared receptor activation mechanism. The key differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using ΔN17 caused profound changes in glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable, supporting a shared mechanism of action for these two hormones in the regulation of energy balance

    ALL-1/MLL1, a homologue of Drosophila TRITHORAX, modifies chromatin and is directly involved in infant acute leukaemia

    Get PDF
    Rearrangements of the ALL-1/MLL1 gene underlie the majority of infant acute leukaemias, as well as of therapy-related leukaemias developing in cancer patients treated with inhibitors of topoisomerase II, such as VP16 and doxorubicin. The rearrangements fuse ALL-1 to any of \u3e50 partner genes or to itself. Here, we describe the unique features of ALL-1-associated leukaemias, and recent progress in understanding molecular mechanisms involved in the activity of the ALL-1 protein and of its Drosophila homologue TRITHORAX
    corecore